|Yryx with Open Texts

LINEAR ALGEBRA with Applications

Open Edition

Adapted for
Emory University
Math 221
Linear Algebra
Sections 1 \& 2
Lectured and adapted by
Le Chen
April 15, 2021
le.chen@emory.edu
Course page
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221

by W. Keith Nicholson

Contents

1 Systems of Linear Equations 5
1.1 Solutions and Elementary Operations 6
1.2 Gaussian Elimination 16
1.3 Homogeneous Equations 28
Supplementary Exercises for Chapter 1 37
2 Matrix Algebra 39
2.1 Matrix Addition, Scalar Multiplication, and Transposition 40
2.2 Matrix-Vector Multiplication 53
2.3 Matrix Multiplication 72
2.4 Matrix Inverses 91
2.5 Elementary Matrices 109
2.6 Linear Transformations 119
2.7 LU-Factorization 135
3 Determinants and Diagonalization 147
3.1 The Cofactor Expansion 148
3.2 Determinants and Matrix Inverses 163
3.3 Diagonalization and Eigenvalues 178
Supplementary Exercises for Chapter 3 201
4 Vector Geometry 203
4.1 Vectors and Lines 204
4.2 Projections and Planes 223
4.3 More on the Cross Product 244
4.4 Linear Operators on \mathbb{R}^{3} 251
Supplementary Exercises for Chapter 4 260
5 Vector Space \mathbb{R}^{n} 263
5.1 Subspaces and Spanning 264
5.2 Independence and Dimension 273
5.3 Orthogonality 287
5.4 Rank of a Matrix 297
5.5 Similarity and Diagonalization 307
Supplementary Exercises for Chapter 5 320
6 Vector Spaces 321
6.1 Examples and Basic Properties 322
6.2 Subspaces and Spanning Sets 333
6.3 Linear Independence and Dimension 342
6.4 Finite Dimensional Spaces 354
Supplementary Exercises for Chapter 6 364
7 Linear Transformations 365
7.1 Examples and Elementary Properties 366
7.2 Kernel and Image of a Linear Transformation 374
7.3 Isomorphisms and Composition 385
8 Orthogonality 399
8.1 Orthogonal Complements and Projections 400
8.2 Orthogonal Diagonalization 410
8.3 Positive Definite Matrices 421
8.4 QR-Factorization 427
8.5 Computing Eigenvalues 431
8.6 The Singular Value Decomposition 436
8.6.1 Singular Value Decompositions 436
8.6.2 Fundamental Subspaces 442
8.6.3 The Polar Decomposition of a Real Square Matrix 445
8.6.4 The Pseudoinverse of a Matrix 447

5.2 Independence and Dimension

Some spanning sets are better than others. If $U=\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is a subspace of \mathbb{R}^{n}, then every vector in U can be written as a linear combination of the \mathbf{x}_{i} in at least one way. Our interest here is in spanning sets where each vector in U has a exactly one representation as a linear combination of these vectors.

Linear Independence

Given $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ in \mathbb{R}^{n}, suppose that two linear combinations are equal:

$$
r_{1} \mathbf{x}_{1}+r_{2} \mathbf{x}_{2}+\cdots+r_{k} \mathbf{x}_{k}=s_{1} \mathbf{x}_{1}+s_{2} \mathbf{x}_{2}+\cdots+s_{k} \mathbf{x}_{k}
$$

We are looking for a condition on the set $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}\right\}$ of vectors that guarantees that this representation is unique; that is, $r_{i}=s_{i}$ for each i. Taking all terms to the left side gives

$$
\left(r_{1}-s_{1}\right) \mathbf{x}_{1}+\left(r_{2}-s_{2}\right) \mathbf{x}_{2}+\cdots+\left(r_{k}-s_{k}\right) \mathbf{x}_{k}=\mathbf{0}
$$

so the required condition is that this equation forces all the coefficients $r_{i}-s_{i}$ to be zero.

Definition 5.3 Linear Independence in \mathbb{R}^{n}

With this in mind, we call a set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ of vectors linearly independent (or simply independent) if it satisfies the following condition:

$$
\text { If } t_{1} \mathbf{x}_{1}+t_{2} \boldsymbol{x}_{2}+\cdots+t_{k} \boldsymbol{x}_{k}=\boldsymbol{0} \text { then } t_{1}=t_{2}=\cdots=t_{k}=0
$$

We record the result of the above discussion for reference.

Theorem 5.2.1

If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is an independent set of vectors in \mathbb{R}^{n}, then every vector in span $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ has a unique representation as a linear combination of the \mathbf{x}_{i}.

It is useful to state the definition of independence in different language. Let us say that a linear combination vanishes if it equals the zero vector, and call a linear combination trivial if every coefficient is zero. Then the definition of independence can be compactly stated as follows:

A set of vectors is independent if and only if the only linear combination that vanishes is the trivial one.

Hence we have a procedure for checking that a set of vectors is independent:

274

Independence Test

To verify that a set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ of vectors in \mathbb{R}^{n} is independent, proceed as follows:

1. Set a linear combination equal to zero: $t_{1} \mathbf{x}_{1}+t_{2} \mathbf{x}_{2}+\cdots+t_{k} \mathbf{x}_{k}=\boldsymbol{0}$.
2. Show that $t_{i}=0$ for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.

Example 5.2.1

Determine whether $\{(1,0,-2,5),(2,1,0,-1),(1,1,2,1)\}$ is independent in \mathbb{R}^{4}.
Solution. Suppose a linear combination vanishes:

$$
r(1,0,-2,5)+s(2,1,0,-1)+t(1,1,2,1)=(0,0,0,0)
$$

Equating corresponding entries gives a system of four equations:

$$
r+2 s+t=0, s+t=0,-2 r+2 t=0, \quad \text { and } 5 r-s+t=0
$$

The only solution is the trivial one $r=s=t=0$ (verify), so these vectors are independent by the independence test.

Example 5.2.2

Show that the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ of \mathbb{R}^{n} is independent.
Solution. The components of $t_{1} \mathbf{e}_{1}+t_{2} \mathbf{e}_{2}+\cdots+t_{n} \mathbf{e}_{n}$ are $t_{1}, t_{2}, \ldots, t_{n}$ (see the discussion preceding Example 5.1.6) So the linear combination vanishes if and only if each $t_{i}=0$. Hence the independence test applies.

Example 5.2.3

If $\{\mathbf{x}, \mathbf{y}\}$ is independent, show that $\{2 \mathbf{x}+3 \mathbf{y}, \mathbf{x}-5 \mathbf{y}\}$ is also independent.
Solution. If $s(2 \mathbf{x}+3 \mathbf{y})+t(\mathbf{x}-5 \mathbf{y})=\mathbf{0}$, collect terms to get $(2 s+t) \mathbf{x}+(3 s-5 t) \mathbf{y}=\mathbf{0}$. Since $\{\mathbf{x}, \mathbf{y}\}$ is independent this combination must be trivial; that is, $2 s+t=0$ and $3 s-5 t=0$. These equations have only the trivial solution $s=t=0$, as required.

Example 5.2.4

Show that the zero vector in \mathbb{R}^{n} does not belong to any independent set.

Solution. No set $\left\{\mathbf{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ of vectors is independent because we have a vanishing, nontrivial linear combination $1 \cdot \mathbf{0}+0 \mathrm{x}_{1}+0 \mathrm{x}_{2}+\cdots+0 \mathrm{x}_{k}=\mathbf{0}$.

Example 5.2.5

Given \mathbf{x} in \mathbb{R}^{n}, show that $\{\mathbf{x}\}$ is independent if and only if $\mathbf{x} \neq \mathbf{0}$.
Solution. A vanishing linear combination from $\{\mathbf{x}\}$ takes the form $t \mathbf{x}=\mathbf{0}, t$ in \mathbb{R}. This implies that $t=0$ because $\mathbf{x} \neq \mathbf{0}$.

The next example will be needed later.

Example 5.2.6

Show that the nonzero rows of a row-echelon matrix R are independent.
Solution. We illustrate the case with 3 leading 1 s ; the general case is analogous. Suppose R has the form $R=\left[\begin{array}{cccccc}0 & 1 & * & * & * & * \\ 0 & 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ where $*$ indicates a nonspecified number. Let R_{1}, R_{2}, and R_{3} denote the nonzero rows of R. If $t_{1} R_{1}+t_{2} R_{2}+t_{3} R_{3}=0$ we show that $t_{1}=0$, then $t_{2}=0$, and finally $t_{3}=0$. The condition $t_{1} R_{1}+t_{2} R_{2}+t_{3} R_{3}=0$ becomes

$$
\left(0, t_{1}, *, *, *, *\right)+\left(0,0,0, t_{2}, *, *\right)+\left(0,0,0,0, t_{3}, *\right)=(0,0,0,0,0,0)
$$

Equating second entries show that $t_{1}=0$, so the condition becomes $t_{2} R_{2}+t_{3} R_{3}=0$. Now the same argument shows that $t_{2}=0$. Finally, this gives $t_{3} R_{3}=0$ and we obtain $t_{3}=0$.

A set of vectors in \mathbb{R}^{n} is called linearly dependent (or simply dependent) if it is not linearly independent, equivalently if some nontrivial linear combination vanishes.

Example 5.2.7

If \mathbf{v} and \mathbf{w} are nonzero vectors in \mathbb{R}^{3}, show that $\{\mathbf{v}, \mathbf{w}\}$ is dependent if and only if \mathbf{v} and \mathbf{w} are parallel.

Solution. If \mathbf{v} and \mathbf{w} are parallel, then one is a scalar multiple of the other (Theorem 4.1.4), say $\mathbf{v}=a \mathbf{w}$ for some scalar a. Then the nontrivial linear combination $\mathbf{v}-a \mathbf{w}=\mathbf{0}$ vanishes, so $\{\mathbf{v}, \mathbf{w}\}$ is dependent. Conversely, if $\{\mathbf{v}, \mathbf{w}\}$ is dependent, let $s \mathbf{v}+t \mathbf{w}=\mathbf{0}$ be nontrivial, say $s \neq 0$. Then $\mathbf{v}=-\frac{t}{s} \mathbf{w}$ so \mathbf{v} and \mathbf{w} are parallel (by Theorem 4.1.4). A similar argument works if $t \neq 0$.

With this we can give a geometric description of what it means for a set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ in \mathbb{R}^{3} to be independent. Note that this requirement means that $\{\mathbf{v}, \mathbf{w}\}$ is also independent $(a \mathbf{v}+b \mathbf{w}=\mathbf{0}$
means that $0 \mathbf{u}+a \mathbf{v}+b \mathbf{w}=\mathbf{0}$), so $M=\operatorname{span}\{\mathbf{v}, \mathbf{w}\}$ is the plane containing \mathbf{v}, \mathbf{w}, and $\mathbf{0}$ (see the discussion preceding Example 5.1.4). So we assume that $\{\mathbf{v}, \mathbf{w}\}$ is independent in the following example.

Example 5.2.8

$\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ independent

$\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ not independent

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be nonzero vectors in \mathbb{R}^{3} where $\{\mathbf{v}, \mathbf{w}\}$ independent. Show that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent if and only if \mathbf{u} is not in the plane $M=\operatorname{span}\{\mathbf{v}, \mathbf{w}\}$. This is illustrated in the diagrams.

Solution. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, suppose \mathbf{u} is in the plane $M=\operatorname{span}\{\mathbf{v}, \mathbf{w}\}$, say $\mathbf{u}=a \mathbf{v}+b \mathbf{w}$, where a and b are in \mathbb{R}. Then $1 \mathbf{u}-a \mathbf{v}-b \mathbf{w}=\mathbf{0}$, contradicting the independence of $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
On the other hand, suppose that \mathbf{u} is not in M; we must show that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent. If $r \mathbf{u}+s \mathbf{v}+t \mathbf{w}=\mathbf{0}$ where r, s, and t are in \mathbb{R}^{3}, then $r=0$ since otherwise $\mathbf{u}=-\frac{s}{r} \mathbf{v}+\frac{-t}{r} \mathbf{w}$ is in M. But then $s \mathbf{v}+t \mathbf{w}=\mathbf{0}$, so $s=t=0$ by our assumption. This shows that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, as required.

By the inverse theorem, the following conditions are equivalent for an $n \times n$ matrix A :

1. A is invertible.
2. If $A \mathbf{x}=\mathbf{0}$ where \mathbf{x} is in \mathbb{R}^{n}, then $\mathbf{x}=\mathbf{0}$.
3. $\mathbf{A x}=\mathbf{b}$ has a solution \mathbf{x} for every vector \mathbf{b} in \mathbb{R}^{n}.

While condition 1 makes no sense if A is not square, conditions 2 and 3 are meaningful for any matrix A and, in fact, are related to independence and spanning. Indeed, if $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ are the columns of A, and if we write $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$, then
by Definition 2.5. Hence the definitions of independence and spanning show, respectively, that condition 2 is equivalent to the independence of $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}$ and condition 3 is equivalent to the requirement that span $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}=\mathbb{R}^{m}$. This discussion is summarized in the following theorem:

Theorem 5.2.2

If A is an $m \times n$ matrix, let $\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{n}\right\}$ denote the columns of A.

1. $\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{n}\right\}$ is independent in \mathbb{R}^{m} if and only if $A \boldsymbol{x}=\boldsymbol{0}, \mathbf{x}$ in \mathbb{R}^{n}, implies $\mathbf{x}=\boldsymbol{0}$.
2. $\mathbb{R}^{m}=\operatorname{span}\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{n}\right\}$ if and only if $A \boldsymbol{x}=\boldsymbol{b}$ has a solution \boldsymbol{x} for every vector \boldsymbol{b} in \mathbb{R}^{m}.

For a square matrix A, Theorem 5.2.2 characterizes the invertibility of A in terms of the spanning and independence of its columns (see the discussion preceding Theorem 5.2.2). It is important to be able to discuss these notions for rows. If $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ are $1 \times n$ rows, we define span $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}\right\}$ to be the set of all linear combinations of the \mathbf{x}_{i} (as matrices), and we say that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is linearly independent if the only vanishing linear combination is the trivial one (that is, if $\left\{\mathbf{x}_{1}^{T}, \mathbf{x}_{2}^{T}, \ldots, \mathbf{x}_{k}^{T}\right\}$ is independent in \mathbb{R}^{n}, as the reader can verify). ${ }^{6}$

Theorem 5.2.3

The following are equivalent for an $n \times n$ matrix A :

1. A is invertible.
2. The columns of A are linearly independent.
3. The columns of A span \mathbb{R}^{n}.
4. The rows of A are linearly independent.
5. The rows of A span the set of all $1 \times n$ rows.

Proof. Let $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ denote the columns of A.
$(1) \Leftrightarrow(2)$. By Theorem 2.4.5, A is invertible if and only if $A \mathbf{x}=\mathbf{0}$ implies $\mathbf{x}=\mathbf{0}$; this holds if and only if $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}$ is independent by Theorem 5.2.2.
$(1) \Leftrightarrow(3)$. Again by Theorem 2.4.5, A is invertible if and only if $A \mathbf{x}=\mathbf{b}$ has a solution for every column B in \mathbb{R}^{n}; this holds if and only if span $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}=\mathbb{R}^{n}$ by Theorem 5.2.2.
$(1) \Leftrightarrow(4)$. The matrix A is invertible if and only if A^{T} is invertible (by Corollary 2.4.1 to Theorem 2.4.4); this in turn holds if and only if A^{T} has independent columns (by (1) $\Leftrightarrow(2)$); finally, this last statement holds if and only if A has independent rows (because the rows of A are the transposes of the columns of A^{T}).
$(1) \Leftrightarrow(5)$. The proof is similar to $(1) \Leftrightarrow(4)$.

Example 5.2.9

Show that $S=\{(2,-2,5),(-3,1,1),(2,7,-4)\}$ is independent in \mathbb{R}^{3}.
Solution. Consider the matrix $A=\left[\begin{array}{rrr}2 & -2 & 5 \\ -3 & 1 & 1 \\ 2 & 7 & -4\end{array}\right]$ with the vectors in S as its rows. A
routine computation shows that $\operatorname{det} A=-117 \neq 0$, so A is invertible. Hence S is independent by Theorem 5.2.3. Note that Theorem 5.2 .3 also shows that $\mathbb{R}^{3}=\operatorname{span} S$.

[^0]
Dimension

It is common geometrical language to say that \mathbb{R}^{3} is 3 -dimensional, that planes are 2 -dimensional and that lines are 1-dimensional. The next theorem is a basic tool for clarifying this idea of "dimension". Its importance is difficult to exaggerate.

Theorem 5.2.4: Fundamental Theorem

Let U be a subspace of \mathbb{R}^{n}. If U is spanned by m vectors, and if U contains k linearly independent vectors, then $k \leq m$.

This proof is given in Theorem 6.3.2 in much greater generality.

Definition 5.4 Basis of \mathbb{R}^{n}

If U is a subspace of \mathbb{R}^{n}, a set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\}$ of vectors in U is called a basis of U if it satisfies the following two conditions:

1. $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\}$ is linearly independent.
2. $U=\operatorname{span}\left\{\mathbf{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m}\right\}$.

The most remarkable result about bases ${ }^{7}$ is:

Theorem 5.2.5: Invariance Theorem

If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\}$ and $\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{k}\right\}$ are bases of a subspace U of \mathbb{R}^{n}, then $m=k$.

Proof. We have $k \leq m$ by the fundamental theorem because $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\}$ spans U, and $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}\right\}$ is independent. Similarly, by interchanging \mathbf{x} 's and \mathbf{y}^{\prime} 's we get $m \leq k$. Hence $m=k$.

The invariance theorem guarantees that there is no ambiguity in the following definition:

Definition 5.5 Dimension of a Subspace of \mathbb{R}^{n}

If U is a subspace of \mathbb{R}^{n} and $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\}$ is any basis of U, the number, m, of vectors in the basis is called the dimension of U, denoted

$$
\operatorname{dim} U=m
$$

The importance of the invariance theorem is that the dimension of U can be determined by counting the number of vectors in any basis. ${ }^{8}$

[^1]Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ denote the standard basis of \mathbb{R}^{n}, that is the set of columns of the identity matrix. Then $\mathbb{R}^{n}=\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ by Example 5.1.6, and $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is independent by Example 5.2.2. Hence it is indeed a basis of \mathbb{R}^{n} in the present terminology, and we have

Example 5.2.10

$\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$ and $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis.

This agrees with our geometric sense that \mathbb{R}^{2} is two-dimensional and \mathbb{R}^{3} is three-dimensional. It also says that $\mathbb{R}^{1}=\mathbb{R}$ is one-dimensional, and $\{1\}$ is a basis. Returning to subspaces of \mathbb{R}^{n}, we define

$$
\operatorname{dim}\{\mathbf{0}\}=0
$$

This amounts to saying $\{\mathbf{0}\}$ has a basis containing no vectors. This makes sense because $\mathbf{0}$ cannot belong to any independent set (Example 5.2.4).

Example 5.2.11

Let $U=\left\{\left.\left[\begin{array}{c}r \\ s \\ r\end{array}\right] \right\rvert\, r, s\right.$ in $\left.\mathbb{R}\right\}$. Show that U is a subspace of \mathbb{R}^{3}, find a basis, and calculate $\operatorname{dim} U$.
Solution. Clearly, $\left[\begin{array}{c}r \\ s \\ r\end{array}\right]=r \mathbf{u}+s \mathbf{v}$ where $\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. It follows that
$U=\operatorname{span}\{\mathbf{u}, \mathbf{v}\}$, and hence that U is a subspace of \mathbb{R}^{3}. Moreover, if $r \mathbf{u}+s \mathbf{v}=\mathbf{0}$, then
$\left[\begin{array}{c}r \\ s \\ r\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ so $r=s=0$. Hence $\{\mathbf{u}, \mathbf{v}\}$ is independent, and so a basis of U. This means
$\operatorname{dim} U=2$.

Example 5.2.12

Let $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ be a basis of \mathbb{R}^{n}. If A is an invertible $n \times n$ matrix, then $D=\left\{A \mathbf{x}_{1}, A \mathbf{x}_{2}, \ldots, A \mathbf{x}_{n}\right\}$ is also a basis of \mathbb{R}^{n}.

Solution. Let x be a vector in \mathbb{R}^{n}. Then $A^{-1} \mathrm{x}$ is in \mathbb{R}^{n} so, since B is a basis, we have $A^{-1} \mathrm{x}=t_{1} \mathbf{x}_{1}+t_{2} \mathrm{x}_{2}+\cdots+t_{n} \mathrm{x}_{n}$ for t_{i} in \mathbb{R}. Left multiplication by A gives $\mathbf{x}=t_{1}\left(A \mathbf{x}_{1}\right)+t_{2}\left(A \mathbf{x}_{2}\right)+\cdots+t_{n}\left(A \mathbf{x}_{n}\right)$, and it follows that D spans \mathbb{R}^{n}. To show independence, let $s_{1}\left(A \mathbf{x}_{1}\right)+s_{2}\left(A \mathbf{x}_{2}\right)+\cdots+s_{n}\left(A \mathbf{x}_{n}\right)=\mathbf{0}$, where the s_{i} are in \mathbb{R}. Then $A\left(s_{1} \mathbf{x}_{1}+s_{2} \mathbf{x}_{2}+\cdots+s_{n} \mathbf{x}_{n}\right)=\mathbf{0}$ so left multiplication by A^{-1} gives $s_{1} \mathbf{x}_{1}+s_{2} \mathbf{x}_{2}+\cdots+s_{n} \mathbf{x}_{n}=\mathbf{0}$. Now the independence of B shows that each $s_{i}=0$, and so proves the independence of D. Hence D is a basis of \mathbb{R}^{n}.

While we have found bases in many subspaces of \mathbb{R}^{n}, we have not yet shown that every subspace has a basis. This is part of the next theorem, the proof of which is deferred to Section 6.4 (Theorem 6.4.1) where it will be proved in more generality.

Theorem 5.2.6

Let $U \neq\{\mathbf{0}\}$ be a subspace of \mathbb{R}^{n}. Then:

1. U has a basis and $\operatorname{dim} U \leq n$.
2. Any independent set in U can be enlarged (by adding vectors from the standard basis) to a basis of U.
3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U.

Example 5.2.13

Find a basis of \mathbb{R}^{4} containing $S=\{\mathbf{u}, \mathbf{v}\}$ where $\mathbf{u}=(0,1,2,3)$ and $\mathbf{v}=(2,-1,0,1)$.
Solution. By Theorem 5.2.6 we can find such a basis by adding vectors from the standard basis of \mathbb{R}^{4} to S. If we try $\mathbf{e}_{1}=(1,0,0,0)$, we find easily that $\left\{\mathbf{e}_{1}, \mathbf{u}, \mathbf{v}\right\}$ is independent. Now add another vector from the standard basis, say \mathbf{e}_{2}.
Again we find that $B=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{u}, \mathbf{v}\right\}$ is independent. Since B has $4=\operatorname{dim} \mathbb{R}^{4}$ vectors, then B must span \mathbb{R}^{4} by Theorem 5.2 .7 below (or simply verify it directly). Hence B is a basis of \mathbb{R}^{4}.

Theorem 5.2.6 has a number of useful consequences. Here is the first.

Theorem 5.2.7

Let U be a subspace of \mathbb{R}^{n} where $\operatorname{dim} U=m$ and let $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\}$ be a set of m vectors in U. Then B is independent if and only if B spans U.

Proof. Suppose B is independent. If B does not span U then, by Theorem 5.2.6, B can be enlarged to a basis of U containing more than m vectors. This contradicts the invariance theorem because $\operatorname{dim} U=m$, so B spans U. Conversely, if B spans U but is not independent, then B can be cut down to a basis of U containing fewer than m vectors, again a contradiction. So B is independent, as required.

As we saw in Example 5.2.13, Theorem 5.2.7 is a "labour-saving" result. It asserts that, given a subspace U of dimension m and a set B of exactly m vectors in U, to prove that B is a basis of U it suffices to show either that B spans U or that B is independent. It is not necessary to verify both properties.

Theorem 5.2.8

Let $U \subseteq W$ be subspaces of \mathbb{R}^{n}. Then:

1. $\operatorname{dim} U \leq \operatorname{dim} W$.
2. If $\operatorname{dim} U=\operatorname{dim} W$, then $U=W$.

Proof. Write $\operatorname{dim} W=k$, and let B be a basis of U.

1. If $\operatorname{dim} U>k$, then B is an independent set in W containing more than k vectors, contradicting the fundamental theorem. So $\operatorname{dim} U \leq k=\operatorname{dim} W$.
2. If $\operatorname{dim} U=k$, then B is an independent set in W containing $k=\operatorname{dim} W$ vectors, so B spans W by Theorem 5.2.7. Hence $W=\operatorname{span} B=U$, proving (2).

It follows from Theorem 5.2 .8 that if U is a subspace of \mathbb{R}^{n}, then $\operatorname{dim} U$ is one of the integers $0,1,2, \ldots, n$, and that:

$$
\begin{array}{lll}
\operatorname{dim} U=0 & \text { if and only if } & U=\{0\} \\
\operatorname{dim} U=n & \text { if and only if } & U=\mathbb{R}^{n}
\end{array}
$$

The other subspaces of \mathbb{R}^{n} are called proper. The following example uses Theorem 5.2 .8 to show that the proper subspaces of \mathbb{R}^{2} are the lines through the origin, while the proper subspaces of \mathbb{R}^{3} are the lines and planes through the origin.

Example 5.2.14

1. If U is a subspace of \mathbb{R}^{2} or \mathbb{R}^{3}, then $\operatorname{dim} U=1$ if and only if U is a line through the origin.
2. If U is a subspace of \mathbb{R}^{3}, then $\operatorname{dim} U=2$ if and only if U is a plane through the origin.

Proof.

1. Since $\operatorname{dim} U=1$, let $\{\mathbf{u}\}$ be a basis of U. Then $U=\operatorname{span}\{\mathbf{u}\}=\{t \mathbf{u} \mid t$ in $\mathbb{R}\}$, so U is the line through the origin with direction vector \mathbf{u}. Conversely each line L with direction vector $\mathbf{d} \neq \mathbf{0}$ has the form $L=\{t \mathbf{d} \mid t$ in $\mathbb{R}\}$. Hence $\{\mathbf{d}\}$ is a basis of U, so U has dimension 1 .
2. If $U \subseteq \mathbb{R}^{3}$ has dimension 2 , let $\{\mathbf{v}, \mathbf{w}\}$ be a basis of U. Then \mathbf{v} and \mathbf{w} are not parallel (by Example 5.2.7) so $\mathbf{n}=\mathbf{v} \times \mathbf{w} \neq \mathbf{0}$. Let $P=\left\{\mathbf{x}\right.$ in $\left.\mathbb{R}^{3} \mid \mathbf{n} \cdot \mathbf{x}=0\right\}$ denote the plane through the origin with normal \mathbf{n}. Then P is a subspace of \mathbb{R}^{3} (Example 5.1.1) and both \mathbf{v} and \mathbf{w} lie in P (they are orthogonal to $\mathbf{n})$, so $U=\operatorname{span}\{\mathbf{v}, \mathbf{w}\} \subseteq P$ by Theorem 5.1.1. Hence

$$
U \subseteq P \subseteq \mathbb{R}^{3}
$$

Since $\operatorname{dim} U=2$ and $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$, it follows from Theorem 5.2.8 that $\operatorname{dim} P=2$ or 3 , whence $P=U$ or \mathbb{R}^{3}. But $P \neq \mathbb{R}^{3}$ (for example, \mathbf{n} is not in P) and so $U=P$ is a plane through the origin.
Conversely, if U is a plane through the origin, then $\operatorname{dim} U=0,1,2$, or 3 by Theorem 5.2.8. But $\operatorname{dim} U \neq 0$ or 3 because $U \neq\{\mathbf{0}\}$ and $U \neq \mathbb{R}^{3}$, and $\operatorname{dim} U \neq 1$ by (1). So $\operatorname{dim} U=2$.

Note that this proof shows that if \mathbf{v} and \mathbf{w} are nonzero, nonparallel vectors in \mathbb{R}^{3}, then $\operatorname{span}\{\mathbf{v}, \mathbf{w}\}$ is the plane with normal $\mathbf{n}=\mathbf{v} \times \mathbf{w}$. We gave a geometrical verification of this fact in Section 5.1.

Exercises for 5.2

In Exercises 5.2.1-5.2.6 we write vectors \mathbb{R}^{n} as rows.
Exercise 5.2.1 Which of the following subsets are independent? Support your answer.
a. $\{(1,-1,0),(3,2,-1),(3,5,-2)\}$ in \mathbb{R}^{3}
b. $\{(1,1,1),(1,-1,1),(0,0,1)\}$ in \mathbb{R}^{3}
c. $\{(1,-1,1,-1),(2,0,1,0),(0,-2,1,-2)\}$ in \mathbb{R}^{4}
d. $\{(1,1,0,0),(1,0,1,0),(0,0,1,1)$, $(0,1,0,1)\}$ in \mathbb{R}^{4}
b. Yes. If $r\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+s\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+t\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, then $r+s=0, r-s=0$, and $r+s+t=0$. These equations give $r=s=t=0$.
d. No. Indeed: $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]-$

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Exercise 5.2.2 Let $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}\}$ be an independent set in \mathbb{R}^{n}. Which of the following sets is independent? Support your answer.
a. $\{\mathbf{x}-\mathbf{y}, \mathbf{y}-\mathbf{z}, \mathbf{z}-\mathbf{x}\}$
b. $\{\mathbf{x}+\mathbf{y}, \mathbf{y}+\mathbf{z}, \mathbf{z}+\mathbf{x}\}$
c. $\{\mathbf{x}-\mathbf{y}, \mathbf{y}-\mathbf{z}, \mathbf{z}-\mathbf{w}, \mathbf{w}-\mathbf{x}\}$
d. $\{\mathbf{x}+\mathbf{y}, \mathbf{y}+\mathbf{z}, \mathbf{z}+\mathbf{w}, \mathbf{w}+\mathbf{x}\}$
b. Yes. If $r(\mathbf{x}+\mathbf{y})+s(\mathbf{y}+\mathbf{z})+t(\mathbf{z}+\mathbf{x})=\mathbf{0}$, then $(r+t) \mathbf{x}+(r+s) \mathbf{y}+(s+t) \mathbf{z}=\mathbf{0}$. Since $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is independent, this implies that $r+t=0$, $r+s=0$, and $s+t=0$. The only solution is $r=s=t=0$.
d. No. In fact, $(\mathbf{x}+\mathbf{y})-(\mathbf{y}+\mathbf{z})+(\mathbf{z}+\mathbf{w})-(\mathbf{w}+$ $\mathbf{x})=\mathbf{0}$.

Exercise 5.2.3 Find a basis and calculate the dimension of the following subspaces of \mathbb{R}^{4}.
a. $\operatorname{span}\{(1,-1,2,0),(2,3,0,3),(1,9,-6,6)\}$
b. $\operatorname{span}\{(2,1,0,-1),(-1,1,1,1),(2,7,4,1)\}$
c. $\operatorname{span}\{(-1,2,1,0),(2,0,3,-1),(4,4,11,-3)$, $(3,-2,2,-1)\}$
d. $\operatorname{span}\{(-2,0,3,1),(1,2,-1,0),(-2,8,5,3)$, $(-1,2,2,1)\}$
b. $\left\{\left[\begin{array}{r}2 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\} ;$ dimension 2 .
d. $\left\{\left[\begin{array}{r}-2 \\ 0 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -1 \\ 0\end{array}\right]\right\}$; dimension 2.

Exercise 5.2.4 Find a basis and calculate the dimension of the following subspaces of \mathbb{R}^{4}.
a. $U=\left\{\left.\left[\begin{array}{c}a \\ a+b \\ a-b \\ b\end{array}\right] \right\rvert\, a\right.$ and b in $\left.\mathbb{R}\right\}$
b. $U=\left\{\left.\left[\begin{array}{c}a+b \\ a-b \\ b \\ a\end{array}\right] \right\rvert\, a\right.$ and b in $\left.\mathbb{R}\right\}$
c. $U=\left\{\left.\left[\begin{array}{c}a \\ b \\ c+a \\ c\end{array}\right] \right\rvert\, a, b\right.$, and c in $\left.\mathbb{R}\right\}$
d. $U=\left\{\left.\left[\begin{array}{c}a-b \\ b+c \\ a \\ b+c\end{array}\right] \right\rvert\, a, b\right.$, and c in $\left.\mathbb{R}\right\}$
e. $U=\left\{\left.\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \right\rvert\, a+b-c+d=0\right.$ in $\left.\mathbb{R}\right\}$
f. $U=\left\{\left.\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \right\rvert\, a+b=c+d\right.$ in $\left.\mathbb{R}\right\}$
b. $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 0\end{array}\right]\right\}$; dimension 2.
d. $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$; dimension 3.
f. $\left\{\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\} ;$ dimension 3.

Exercise 5.2.5 Suppose that $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}\}$ is a basis of \mathbb{R}^{4}. Show that:
a. $\{\mathbf{x}+a \mathbf{w}, \mathbf{y}, \mathbf{z}, \mathbf{w}\}$ is also a basis of \mathbb{R}^{4} for any choice of the scalar a.
b. $\{\mathbf{x}+\mathbf{w}, \mathbf{y}+\mathbf{w}, \mathbf{z}+\mathbf{w}, \mathbf{w}\}$ is also a basis of \mathbb{R}^{4}.
c. $\{\mathbf{x}, \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}+\mathbf{z}, \mathbf{x}+\mathbf{y}+\mathbf{z}+\mathbf{w}\}$ is also a basis of \mathbb{R}^{4}.
b. If $r(\mathbf{x}+\mathbf{w})+s(\mathbf{y}+\mathbf{w})+t(\mathbf{z}+\mathbf{w})+u(\mathbf{w})=\mathbf{0}$, then $r \mathbf{x}+s \mathbf{y}+t \mathbf{z}+(r+s+t+u) \mathbf{w}=\mathbf{0}$, so $r=0$, $s=0, t=0$, and $r+s+t+u=0$. The only solution is $r=s=t=u=0$, so the set is independent. Since $\operatorname{dim} \mathbb{R}^{4}=4$, the set is a basis by Theorem 5.2.7.

Exercise 5.2.6 Use Theorem 5.2.3 to determine if the following sets of vectors are a basis of the indicated space.
a. $\{(3,-1),(2,2)\}$ in \mathbb{R}^{2}
b. $\{(1,1,-1),(1,-1,1),(0,0,1)\}$ in \mathbb{R}^{3}
c. $\{(-1,1,-1),(1,-1,2),(0,0,1)\}$ in \mathbb{R}^{3}
d. $\{(5,2,-1),(1,0,1),(3,-1,0)\}$ in \mathbb{R}^{3}
e. $\{(2,1,-1,3),(1,1,0,2),(0,1,0,-3)$, $(-1,2,3,1)\}$ in \mathbb{R}^{4}
f. $\{(1,0,-2,5),(4,4,-3,2),(0,1,0,-3)$, $(1,3,3,-10)\}$ in \mathbb{R}^{4}
b. Yes
d. Yes
f. No.

Exercise 5.2.7 In each case show that the statement is true or give an example showing that it is false.
a. If $\{\mathbf{x}, \mathbf{y}\}$ is independent, then $\{\mathbf{x}, \mathbf{y}, \mathbf{x}+\mathbf{y}\}$ is independent.
b. If $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is independent, then $\{\mathbf{y}, \mathbf{z}\}$ is independent.
c. If $\{\mathbf{y}, \mathbf{z}\}$ is dependent, then $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is dependent for any \mathbf{x}.
d. If all of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}$ are nonzero, then $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is independent.
e. If one of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}$ is zero, then $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is dependent.
f. If $a \mathbf{x}+b \mathbf{y}+c \mathbf{z}=\mathbf{0}$, then $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is independent.
g. If $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is independent, then $a \mathbf{x}+b \mathbf{y}+$ $c \mathbf{z}=\mathbf{0}$ for some a, b, and c in \mathbb{R}.
h. If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is dependent, then $t_{1} \mathbf{x}_{1}+$ $t_{2} \mathbf{x}_{2}+\cdots+t_{k} \mathbf{x}_{k}=\mathbf{0}$ for some numbers t_{i} in \mathbb{R} not all zero.
i. If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is independent, then $t_{1} \mathbf{x}_{1}+$ $t_{2} \mathbf{x}_{2}+\cdots+t_{k} \mathbf{x}_{k}=\mathbf{0}$ for some t_{i} in \mathbb{R}.
j. Every non-empty subset of a linearly independent set is again linearly independent.
k. Every set containing a spanning set is again a spanning set.
b. T. If $r \mathbf{y}+s \mathbf{z}=\mathbf{0}$, then $0 \mathbf{x}+r \mathbf{y}+s \mathbf{z}=\mathbf{0}$ so $r=s=0$ because $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is independent.
d. F. If $\mathbf{x} \neq \mathbf{0}$, take $k=2, \mathbf{x}_{1}=\mathbf{x}$ and $\mathbf{x}_{2}=-\mathbf{x}$.
f. F. If $\mathbf{y}=-\mathbf{x}$ and $\mathbf{z}=\mathbf{0}$, then $1 \mathbf{x}+1 \mathbf{y}+1 \mathbf{z}=\mathbf{0}$.
h. T. This is a nontrivial, vanishing linear combination, so the \mathbf{x}_{i} cannot be independent.

Exercise 5.2.8 If A is an $n \times n$ matrix, show that $\operatorname{det} A=0$ if and only if some column of A is a linear combination of the other columns.

Exercise 5.2.9 Let $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ be a linearly independent set in \mathbb{R}^{4}. Show that $\left\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{e}_{k}\right\}$ is a basis of \mathbb{R}^{4} for some \mathbf{e}_{k} in the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$.

Exercise 5.2.10 If $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}\right\}$ is an independent set of vectors, show that the subset $\left\{\mathbf{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{5}\right\}$ is also independent.

If $r \mathrm{x}_{2}+s \mathrm{x}_{3}+t \mathrm{x}_{5}=\mathbf{0}$ then $0 \mathrm{x}_{1}+r \mathrm{x}_{2}+s \mathrm{x}_{3}+0 \mathrm{x}_{4}+$ $t \mathbf{x}_{5}+0 \mathbf{x}_{6}=\mathbf{0}$ so $r=s=t=0$.

Exercise 5.2.11 Let A be any $m \times n$ matrix, and let $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots, \mathbf{b}_{k}$ be columns in \mathbb{R}^{m} such that the system $A \mathbf{x}=\mathbf{b}_{i}$ has a solution \mathbf{x}_{i} for each i. If $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots, \mathbf{b}_{k}\right\}$ is independent in \mathbb{R}^{m}, show that $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{k}\right\}$ is independent in \mathbb{R}^{n}.
Exercise 5.2.12 If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{k}\right\}$ is independent, show $\left\{\mathrm{x}_{1}, \mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{x}_{1}+\mathrm{x}_{2}+\right.$ $\left.\mathrm{x}_{3}, \ldots, \mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{k}\right\}$ is also independent.

If $t_{1} \mathbf{x}_{1}+t_{2}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\cdots+t_{k}\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{k}\right)=\mathbf{0}$, then $\left(t_{1}+t_{2}+\cdots+t_{k}\right) \mathbf{x}_{1}+\left(t_{2}+\cdots+t_{k}\right) \mathbf{x}_{2}+\cdots+\left(t_{k-1}+\right.$ $\left.t_{k}\right) \mathbf{x}_{k-1}+\left(t_{k}\right) \mathbf{x}_{k}=\mathbf{0}$. Hence all these coefficients are zero, so we obtain successively $t_{k}=0, t_{k-1}=$ $0, \ldots, t_{2}=0, t_{1}=0$.

Exercise 5.2.13 If $\left\{\mathbf{y}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{k}\right\}$ is independent, show that $\left\{\mathbf{y}+\mathbf{x}_{1}, \mathbf{y}+\mathbf{x}_{2}, \mathbf{y}+\mathbf{x}_{3}, \ldots, \mathbf{y}+\right.$ $\left.\mathbf{x}_{k}\right\}$ is also independent.

Exercise 5.2.14 If $\left\{\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}\right\}$ is independent in \mathbb{R}^{n}, and if \mathbf{y} is not in span $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$, show that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}, \mathbf{y}\right\}$ is independent.
Exercise 5.2.15 If A and B are matrices and the columns of $A B$ are independent, show that the columns of B are independent.
Exercise 5.2.16 Suppose that $\{\mathbf{x}, \mathbf{y}\}$ is a basis of \mathbb{R}^{2}, and let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
a. If A is invertible, show that $\{a \mathbf{x}+b \mathbf{y}, c \mathbf{x}+d \mathbf{y}\}$ is a basis of \mathbb{R}^{2}.
b. If $\{a \mathbf{x}+b \mathbf{y}, c \mathbf{x}+d \mathbf{y}\}$ is a basis of \mathbb{R}^{2}, show that A is invertible.
b. We show A^{T} is invertible (then A is invertible). Let $A^{T} \mathbf{x}=\mathbf{0}$ where $\mathbf{x}=[s t]^{T}$. This means $a s+c t=0$ and $b s+d t=0$, so $s(a \mathbf{x}+$ $b \mathbf{y})+t(c \mathbf{x}+d \mathbf{y})=(s a+t c) \mathbf{x}+(s b+t d) \mathbf{y}=\mathbf{0}$. Hence $s=t=0$ by hypothesis.

Exercise 5.2.17 Let A denote an $m \times n$ matrix.
a. Show that null $A=\operatorname{null}(U A)$ for every invertible $m \times m$ matrix U.
b. Show that $\operatorname{dim}(\operatorname{null} A)=\operatorname{dim}(\operatorname{null}(A V))$ for every invertible $n \times n$ matrix V. [Hint: If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is a basis of null A, show that $\left\{V^{-1} \mathbf{x}_{1}, V^{-1} \mathbf{x}_{2}, \ldots, V^{-1} \mathbf{x}_{k}\right\}$ is a basis of $\operatorname{null}(A V)$.]
b. Each $V^{-1} \mathbf{x}_{i}$ is in null (AV) because $A V\left(V^{-1} \mathbf{x}_{i}\right)=A \mathbf{x}_{i}=\mathbf{0} . \quad$ The set
$\left\{V^{-1} \mathbf{x}_{1}, \ldots, V^{-1} \mathbf{x}_{k}\right\}$ is independent as V^{-1} is invertible. If \mathbf{y} is in null $(A V)$, then $V \mathbf{y}$ is in $\operatorname{null}(A)$ so let $V \mathbf{y}=t_{1} \mathbf{x}_{1}+\cdots+t_{k} \mathbf{x}_{k}$ where each t_{k} is in \mathbb{R}. Thus $\mathbf{y}=t_{1} V^{-1} \mathbf{x}_{1}+\cdots+t_{k} V^{-1} \mathbf{x}_{k}$ is in $\operatorname{span}\left\{V^{-1} \mathbf{x}_{1}, \ldots, V^{-1} \mathbf{x}_{k}\right\}$.

Exercise 5.2.18 Let A denote an $m \times n$ matrix.
a. Show that $\operatorname{im} A=\operatorname{im}(A V)$ for every invertible $n \times n$ matrix V.
b. Show that $\operatorname{dim}(\operatorname{im} A)=\operatorname{dim}(\operatorname{im}(U A))$ for every invertible $m \times m$ matrix U. [Hint: If $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}\right\}$ is a basis of $\operatorname{im}(U A)$, show
that $\left\{U^{-1} \mathbf{y}_{1}, U^{-1} \mathbf{y}_{2}, \ldots, U^{-1} \mathbf{y}_{k}\right\}$ is a basis of $\operatorname{im} A$.]

Exercise 5.2.19 Let U and W denote subspaces of \mathbb{R}^{n}, and assume that $U \subseteq W$. If $\operatorname{dim} U=n-1$, show that either $W=U$ or $W=\mathbb{R}^{n}$.

Exercise 5.2.20 Let U and W denote subspaces of \mathbb{R}^{n}, and assume that $U \subseteq W$. If $\operatorname{dim} W=1$, show that either $U=\{\mathbf{0}\}$ or $U=W$.
We have $\{\mathbf{0}\} \subseteq U \subseteq W$ where $\operatorname{dim}\{\mathbf{0}\}=0$ and $\operatorname{dim} W=1$. Hence $\operatorname{dim} U=0$ or $\operatorname{dim} U=1$ by Theorem 5.2.8, that is $U=0$ or $U=W$, again by Theorem 5.2.8.
5.2. Independence and Dimension $\quad 453$

[^0]: ${ }^{6}$ It is best to view columns and rows as just two different notations for ordered n-tuples. This discussion will become redundant in Chapter 6 where we define the general notion of a vector space.

[^1]: ${ }^{7}$ The plural of "basis" is "bases".
 ${ }^{8}$ We will show in Theorem 5.2.6 that every subspace of \mathbb{R}^{n} does indeed have a basis.

